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On the structure of the Green-Christoffel tensor 

F I Fedorov and A F Fedorov 
Institute of Physics of the BSSR Academy of Sciences, Leninsky Prospect 70, Minsk 220602, 
USSR 

Received 2 January 1990 

Abstract. I n  the theory of elastic waves for crystals of hexagonal, tetragonal and rhombic 
symmetries a pseudonormal vector is introduced by which the Green-Christoffel tensor 
can be represented in Kelvin form, i .e.  as a sum of  a diagonal tensor and a dyad. It  is 
shown that this approach provides a number of new simple relations for specific directions 
in the aforementioned crystals. For crystals of trigonal, monoclinic and triclinic symmetries 
a more general representation of the Green-Christaffel tensor as a sum o f a  diagonal tensor 
and two dyads is suggested. 

The basic equation for elastic waves in crystals is [l] 

( A - u 2 ) u = 0  ( A g - - 0 ’ 6 ~ ) ~ ~ = 0  (1)  

where U is the medium displacement vector; A=(Aah)=(AaChdn,nd)  is the Green- 
Christoffel tensor; n = ( n , )  is the unit vector of the wave normal; Aacbd is the reduced 
tensor [ l ]  of crystal elastic constants; U is the phase velocity. 

In general (1) is rather complex. Therefore in crystals the specific role is played 
by those directions n for which its solution can be simplified essentially. First of all 
it concerns symmetry axes, normals to the crystal symmetry planes and directions lying 
in these planes. 

General equation for the cone of specific directions in crystals (un = 0; uini = 0) was 
obtained in [l]: 

n A 2 [ n , A n ] = 0  

For such directions one of the three isonormal waves is strictly transversal, its displace- 
ment vector being parallel to [ n ,  An] (u l l [n ,  A n ] ) .  Directions n, for which ulln, are called 
longitudinal normals and also lie on the cone (2) .  

Thus for specific directions n we know the displacement of one of the waves (ul ln 
or ull[n,  A n ] )  and consequently the corresponding phase velocity v 2  = n A n  or v 2  = 
[n ,  A n ] A [ n ,  An]/[n, An]’.  Parameters of two other waves can be found simply. Hence 
the normals n lying on the cone (2) are some kind of base directions with the help of 
which one can easily obtain essential characteristics of possible properties of elastic 
waves in any crystal. The more such base directions we know, the more we can say 
about the propagation of waves in the medium considered. 
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Nevertheless another, more general, representation of the Green-Christoffel tensor 

A =  a +  N . N ' +  N ' . N  N = a n  N ' =  a 'n  (10) 

is possible in TMT-crystals: 

where 9 is diagonal tensor, the components of which are defined by 

aC = ACc - 2N,N: 

(there is no summing over c) and a, a' are some constant matrices. In the general 
case we have 

1 a , , n l + a l 2 n 2 +  %n3 4 n t  + a:2n2+ak73  

a3 ,n1  + a,,n2+ a3,n3 a : , r l l + a ; 2 n 2 + 4 , n ,  

a : , n , + a ; , n , + a ; , n ,  . (11) 

g,= A23 + 
To find vectors N, N' it is necessary to utilize values A.,, from (13)-(15) and to solve 
the resulting systems of equations (12) with respect to a,,,, a:,,. 
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In the case of trigonal crystals, according to (13) ,  components A,,& ( a  # b )  do not 
contain elements proportional to n:, therefore vectors N and N' can be chosen in the 
following way: 

n ,  P I  

N =  xn,+yn, N ' =  5n,+)/n2+[n, . (16) [x .nl+y,nl  [ 5 r n , +  v , n 2 + l , n 1  
By substituting (13) and (16) into (12)  and equating the coefficients at nonh we obtain 
C = 2A,&. L'= b and for the other nine unknowns-a system of nine equations: 

5 + p x = o  v + w = a  5'+ px '  = 0 

by+2A,,y'= b xq'+x'7+5y'+5'y=O 

X ~ ' + X ' [  = A,., Yv '+Y 'v  =-A, ,  

v ' + p y ' =  2 A I 4  bx+2Al,x'= 0 

the solutions of which are ( p  = b/2Al, ,  p = (A,,+ap)/(2A,,-ap)) 

Y = -P*- I* = - [ A , , + ~ P + ( ~ ~ , , - ~ P ) Y ~ / ~ P Y ( Y  - 1 )  
x = * A , ~ / &  x' = -px Y ' = P ( l - Y )  5=-pX 

5' = PPX ) / = a - P Y  ) / ' = ~ A I ~ - P P ( ~  - Y ) .  
All the combinations of signs at x and y give four solutions. 

the following representation: 
In the case of monoclinic crystals on the base of (14)  we utilize for vectors N, N' 

N =  [ yn,+Sn2 n, ] N ' = [  yrn;;:n2] (17) 

a n , + P n ,  a'nl + p 'n2  

and from (12)  obtain the equations 

p'a + a ' =  b ,  PLIP + P ' =  A,, P ' Y + Y ' = A x  p'S + 8' = C ,  
(18) 

a y ' + a ' y =  A , ,  OS'+ 0'8 = A26 a s ' + a ' S + p y ' + p ' y =  a , .  
By expressing a', p', y ' ,  8' through the other variables we obtain three equations with 
five unknowns: 

A3,a+ b l y - 2 p ' a y =  A I ,  A3,S + c,p - 2p'pS = A,, 
(19) 

After multiplication of all these equations by p' and introduction of the notation 
p'a = x, p'p = y, p ' y  = z, pL)S = U, we have 

c , a  + b,S+A\,,(p + y ) - 2 p ' ( a S + p y )  = a , .  

A3,x+ b I z - 2 x z  = AI6p' A3,u+ C,y -2uy=A26p' 
(20)  

c,x+ b,u+A,,(y + z )  -2(xu+ y z )  =a+' .  

Regarding pairs of variables x, y or U. z as given parameters, we obtain a system of 
three linear equations for U, z, p' or x, y, p', respectively. For example, by giving x, 
y we have 

(21)  
( 2 x  - bl )z+ A16p'= A+ ( 2 ~  - A d U + A x + ' = C i Y  

( 2 x -  b , )u+ (2y  -Ala)z+a,p '  = c , x + A ~ y .  
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Thus one can easily express z, U, F ’  and all the other unknowns in terms of x and y 
for which an arbitrary value can be chosen. Therefore in the case of monoclinic crystals 
we have continuous two-parameter set of pairs of vectors N, N ’  realizing representation 
(10). One can use the arbitrariness of the parameters x, y or U, z to simplify some 
calculations. However, this arbitrariness is restricted. Thus we cannot set x and y equal 
to zero simultaneously because the system becomes homogeneous, and for existence 
of solutions its determinant should be equal to zero, which means that these must be 
some algebraic relation between the elastic constants of a crystal. For example, by 
setting p’=O we obtain a linear system of three equations with four variables: 

a h 6 +  b, = A 16 SA,e.+ciP= A x  c ,a+ b ,S+A, , (p+  y ) =  aI (22) 

which has a continuous one-parameter set of solutions because arbitrary values can 
be given to one of the variables a, p, y or  S. 

In the case of triclinic crystals, due to the absence of terms with n: in A , * ,  A, ,  and 
A2,, we can suppose, in general, expressions (15) for N :  a , ,=a ,=a ,=O (or 
analogously for N ) .  As a result we obtain rather a complex system of 15 equations 
with 15 unknowns. However, its solution can be obtained numerically with the known 
values of elastic constants (which seem to not he defined yet for triclinic crystals). It 
is natural to suppose that equations (12) must have solutions in this case too. 

Let us consider applications of the representation obtained for the Green-Christoffel 
tensor. 

According to representation (6) in HTR-crystals the vector N which we call a 
pseudonormal, corresponds to each wave normal n. Pseudonormal N is not a unit 
vector. Moreover, its length varies according to changing of n. 

Using the notion of pseudonormals we can define in HTR-crystals (ana~ogous~y to 
[ 11, section 17) a number of additional extracted directions for which the basic equation 
(1) has simple solutions. 

Thus if longitudinal normals (u l ln)  are defined by the condition [ n , A n ] = O  then 
the directions of longitudinal pseudonormals (ul lN) are defined by the condition [ N ,  
A N ]  = 0, which due to (6) is reduced to [N, 9 N ]  = 0 and, because of the diagonal 
nature of 9, is more simple. Then equation (Z), for the specific direction, cone 
transforms into an equation for the pseudospecific direction cone ( U N  = 0): 

N B 2 [ 9 N ,  N ] = O  ( 4 N ,  9 N I )  (23) 

where longitudinal pseudonormals also lie. Note that some of the pseudospecific 
directions may coincide with specific ones (Nlln) .  Phase velocities of pseudo- 
longitudinal waves (ul lN) in the case of longitudinal pseudonormals are 

u 2 =  N A N / N 2 =  N ’ + N 9 N / N 2  ( [ N , 9 N ] = O ) .  

Velocities of pseudotransversal waves ( U N  = 0) for the pseudospecific directions (23) 
are (cf [l] ,  (12.53)) 

u’=[N,  9 N ] 9 [ N ,  9 N ] / [ N ,  9 N I 2  

= I 9 I( ”v. ~9 - I N  - N I ) /  ( N” N B ~ N  - ( N ~ N ) ’ ) .  

The condition [ N ,  9 N ]  = O  in  Hm-crystals i s  equivalent to the relations 

N ,  N 2 ( 9 ,  -92)=0 N , N , ( 9 ,  - 9,) = 0 N 2  N3( 9’ - 9,) = 0. 

In hexagonal crystals p ,  = p 2 ,  9, = 5% (see (7)),  therefore from N,=  0 we have Nl/n, 
i.e. longitudinal normals and pseudonormals coincide in this case. The same is true 
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at N, = N2 = 0. Different directions for them can be realized only from the condition 
9, = 9, that gives for longitudinal pseudonormals cone the expression n, = 

fJ(A44-A66)/(2A44-A66-A, ,+P:) .  Accordingly for the cone of the longitudinal 
normals we have 

F I Fedorov and A F Fedoroo 

n3 = * t J (A , ,  - A , ,  -2A&(Aj, +A, ,  -2A,,-4Aa4). 

It is evident that the cones exist only when expressions within the square root are 
positive and less than unity. 

In tetragonal crystals there is also 0, = P 2 ,  and at N, = N2 = 0 or N, = 0 we have 
NI1 n. However, 9, # a,, therefore only the following conditions remain for longitudinal 
pseudonormals: (i) N , = 0 , 9 2 = 9 3 ; o r ( i i )  N 2 = 0 , 9 , = 9 , ; o r ( i i i )  9 , = 9 , = 9 , . T h e  
first two cases give 

(24) = f J ( A  I I - A  1 2 -  h - A 6 6 ) / ( A  I I - A , , +  A,, - A66-2A44 -0;) 
( n 2 =  fm or n ,  = fm). In the third case 

Of course, the aforementioned restrictions over corresponding expressions are also 
valid here. For longitudinal normals according to [l,section 381, instead of (24) we 
have n: = ( A l 1  - A l , - 2 A u ) / ( A , ,  -2A,,+A,,-4A,,), and instead of (25) 

n:=  (2h13+4A44- A , ,  - A I 2  - 2 A d ( 4 A 1 3 +  8 A 4 4 - A I ,  -A,,-2A,3 -2A66) .  

In rhombic crystals we have U /IN at N directed along the coordinate axes ( n ,  = n2 = 0 
etc). Besides that, there are four additional possibilities: N, =0, a2=B3 and two 
analogous ones, and 9, = 9, = 9,. 

Consider the cones of specific and pseudospecific directions. In hexagonal crystals 
all the directions are specific [ 1, section 321. Using (23) and (7) one can be easily 
convinced that it is valid for pseudospecific directions too. In tetragonal crystals 
[ l ,  (39.10)] specific directions lay in the planes (i) n ,  =0, (ii) n,=O, (iii) n , = O ,  
(iv) n ,  f n2 = 0 and on the surface of the fourth-order cone 

z 2 ( A z 2 + B r 2 ) - C x 2 y 2 - D r 4 = 0  (26) 

where 

A u(A3, - - A , ,  -p '+  x )  B = p ' ~ + ( p ' + x ) ( A , , - A , ~  - 2 L - 2 u )  

D = p'x P ' = A ~ ~ - A , , + ~ A M  

U = A,, - A l a  -2p', x = Ae6-  Add.  

As for cone of pseudospecific directions, its equation according to (23) is 

N,N,N,[a:(9,-aa,)+a:(a,-a,)+ 9:(a, - 9 4 1 = 0  

Thus coordinate planes N, = n ,  = 0 etc will also be sheets of the cone of the 
pseudospecific directions for any Hn-crystals. Besides, these directions are laying O n  

the sixth-order cone 

9?(9*-9,)+ a:(a,-a,)+ @(9, -B2) = (9, - B2)(9>-a,K9,-9,) = 0  

which decays into three second-order cones: 
9 , - 9 , = 0  a>- 9 , = 0  a, - 9, = 0 
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In tetragonal crystals the first cone 9, -a2 = O =  n:-  n i  coincides with the correspond- 
ing cone for specific directions and degenerates into two planes n ,  f n2 = 0. However, 
instead of the fourth-order cone (26) we have for pseudospecific directions two the 
second-order cones: 

9, -a, = w x 2 - x y 2 +  d = O  

o = A , ,  - A l 2 -  A44 T =  A,,-A,,+P:. 

g2- a,=xx2+lOy*+ & = o  

For rhombic crystals the cones (27) are 

9 2 - 9 3 =  ( A , , - A s ~ ) X * + ( A ~ ~ - A ~ ~ - P : ) ~ ~ +  (A, , -A, ,+p: )z2  = O  

9, - 9,= ( A , , - A , , - ~ ~ ) X ’ + ( A , , - A , , ) ~ ~ + ( A , , - A , , + ~ : ) Z ~ = O  

9, - a2 = ( A , ,  - p:)x’+ ( A ~ , -  ~ , ,+p : ) y ’+  ( A ~ ~  - ,i4,,)z2 = 0. 
The equation for the cone of specific directions ( 2 )  in rhombic crystals is very 
cumbersome. 

Thus it follows from the foregoing that the treatment of pseudonormals and 
corresponding relations permits one to expand essentially the set of directions in 
HTR-crystals for which the basic equation ( 1 )  has simple solutions, and to facilitate 
analysis of the properties of elastic waves propagating there. It should be noted that 
the relations for pseudonormals N as a rule are more simple than the corresponding 
relations for normals n. 

In TMr-crystals, due to their lower symmetry, obtaining solutions to ( 1 )  in a simpler 
form can be done for more a restricted set of wave normal directions. I n  particular 
(2) for the ninth-order cone of specific directions in trigonal and monoclinic crystals 
(and especially in triclinic ones) is more cumbersome than in rhombic crystals. However, 
by utilizing representation (10) one can obtain some simplifications even in these cases. 

For TMT-crystals a special role is played by the directions of the vector [NN’]. In 
fact, at ull[NN’] equation ( 1 )  is ( A - u 2 ) [ N N ] = ( 9 - u 2 ) [ N N ‘ ] = 0 .  Therefore when 
all diagonal elements of the tensor 9 are equal to each other, i.e. when 9, = 9, = 9, = 

u2,  then the vector [NN’] will be an eigenvector of A. According to ( lo) ,  (13)  and (16) 
for the case of trigonal crystals we have 

9, = A , ,  - 2 N , N {  = ( A , ,  -2p)n:+A,,nS+ Ad,n:+2A,,n,n, 

a2 = A 2 2 - 2 N 2 N ;  = A,@:+ A l l n i +  A44n:-2(xnl +yn2)(@, + ?“*+in,) 

9, = A 3 , - 2 N , N ; =  A,,+(A,,-A,,)n: - 2 ( x ‘ n ,  +y ’n , ) ( f n ,  + q’n2+ < ‘n3) ,  

By equating these expressions to each other we obtain two equations: 

9, -9,=An:+Bn:+Cn:+Dn,n,+En,n,+Fnzn,=0 

a2 - 9, = A’ni+ 
(28) C’n:+ D ’ n , n , +  E ’ n ,  n,f F’n,n,  = O  

where 

A = A , ,  - A,, - 2+ + 2x5 A’ = Ahh - A,,+ 2(x’5+ xt’) B = ,le,,- A +2yq 

B’=All-A,,+2(y’?’-y?) C = 0,  C’ = A 4 4 - A ) j  D = 2(xv + 5 ~ )  
D’= 2(x’?’+ 5‘~’- X? - ( y )  

F =  ~ ( A I ~ + Y L )  F’ = 2(y’5’-yi) .  

So when n lies on the intersection of two second-order cones (28 )  then [NN’] will 
give direction of displacement of the elastic wave. 

E =2x5 E’ = 2(x’L’- x i )  
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This condition is more simple than the condition for the case where the specific 
direction lies on the ninth-order cone (2). Moreover, the form (IO) by condition (28) 
permits one to obtain the displacement directions and velocities of the three waves 
(see [6,7]): 

Therefore the representation (10) by condition (28) permits one to solve at once the 
main problem of crystal acoustics for the corresponding n. It is evident that analogous 
investigations can be made in the same way for monoclinic crystals using (17)-(22). 

Thus one can see that utilizing of representation ( I O )  provides some new possibilities 
for finding a basic directions of wave normals in TMT-crystals, for which simple solutions 
exist. 
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